Что такое коэффициент полезного действия двигателя

Содержание

Механическая работа. Единицы работы.

В обыденной жизни под понятием «работа» мы понимаем всё.

В физике понятие работа

несколько иное. Это определенная физическая величина, а значит, ее можно измерить. В физике изучается прежде всегомеханическая работа .

Рассмотрим примеры механической работы.

Поезд движется под действием силы тяги электровоза, при этом совершается механическая работа. При выстреле из ружья сила давления пороховых газов совершает работу — перемещает пулю вдоль ствола, скорость пули при этом увеличивается.

Из этих примеров видно, что механическая работа совершается, когда тело движется под действием силы. Механическая работа совершается и в том случае, когда сила, действуя на тело (например, сила трения), уменьшает скорость его движения.

Желая передвинуть шкаф, мы с силой на него надавливаем, но если он при этом в движение не приходит, то механической работы мы не совершаем. Можно представить себе случай, когда тело движется без участия сил (по инерции), в этом случае механическая работа также не совершается.

Итак, механическая работа совершается, только когда на тело действует сила, и оно движется

Нетрудно понять, что чем большая сила действует на тело и чем длиннее путь, который проходит тело под действием этой силы, тем большая совершается работа.

Механическая работа прямо пропорциональна приложенной силе и прямо пропорциональна пройденному пути

Поэтому, условились измерять механическую работу произведением силы на путь, пройденный по этому направлению этой силы:

работа = сила × путь

где А

— работа,F — сила иs — пройденный путь.

За единицу работы принимается работа, совершаемая силой в 1Н, на пути, равном 1 м.

Единица работы — джоуль

(Дж ) названа в честь английского ученого Джоуля. Таким образом,

Используется также килоджоули

(кДж ) .

Формула А = Fs

применима в том случае, когда силаF постоянна и совпадает с направлением движения тела.

Если направление силы совпадает с направлением движения тела, то данная сила совершает положительную работу.

Если же движение тела происходит в направлении, противоположном направлению приложенной силы, например, силы трения скольжения, то данная сила совершает отрицательную работу.

Если направление силы, действующей на тело, перпендикулярно направлению движения, то эта сила работы не совершает, работа равна нулю:

В дальнейшем, говоря о механической работе, мы будем кратко называть ее одним словом — работа.

Пример

. Вычислите работу, совершаемую при подъеме гранитной плиты объемом 0,5 м3 на высоту 20 м. Плотность гранита 2500 кг/м 3 .

Запишем условие задачи, и решим ее.

где F -сила, которую нужно приложить, чтобы равномерно поднимать плиту вверх. Эта сила по модулю равна силе тяж Fтяж, действующей на плиту, т. е. F = Fтяж. А силу тяжести можно определить по массе плиты: Fтяж = gm. Массу плиты вычислим, зная ее объем и плотность гранита: m = ρV; s = h, т. е. путь равен высоте подъема.

Итак, m = 2500 кг/м3 · 0,5 м3 = 1250 кг.

F = 9,8 Н/кг · 1250 кг ≈ 12 250 Н.

A = 12 250 Н · 20 м = 245 000 Дж = 245 кДж.

Рычаги.Мощность.Энергия

На совершение одной и той же работы различным двигателям требуется разное время. Например, подъемный кран на стройке за несколько минут поднимает на верхний этаж здания сотни кирпичей. Если бы эти кирпичи перетаскивал рабочий, то ему для этого потребовалось бы несколько часов. Другой пример. Гектар земли лошадь может вспахать за 10-12 ч, трактор же с многолемешным плугом (лемех

— часть плуга, подрезающая пласт земли снизу и передающая его на отвал; многолемешный — много лемехов), эту работу выполнит на 40-50 мин.

Ясно, что подъемный кран ту же работу совершает быстрее, чем рабочий, а трактор — быстрее чем лошадь. Быстроту выполнения работы характеризуют особой величиной, называемой мощностью.

Методика и порядок измерений

Идеальные условия можно рассматривать только в теории. Для корректной оценки замкнутой системы необходимо учитывать энергетические потери на выполнение необходимой работы. Ниже показано, как определить КПД механических силовых агрегатов с применением разных исходных данных.

Движению поршня в блоке цилиндров двигателя внутреннего сгорания препятствует сила трения. Поступательно-возвратные движения в ходе стандартного цикла преобразуются во вращение вала с дополнительными потерями. Высокая температура не выполняет в данном случае полезные функции. Чтобы не допустить разрушения агрегата, необходимо поддерживать определенный тепловой режим. Приходится обеспечить циркуляцию охлаждающей жидкости с помощью помпы.

Понятно, что в подобном случае сделать общий КПД расчет с учетом каждого компонента конструкции непросто. Однако можно узнать в ходе эксперимента с высокой точностью, какое количество топлива (масса – m) придется затратить на 100 км пробега машины за соответствующее время (t). Далее нужно взять из сопроводительной документации (справочников) следующие данные:

  • мощность мотора – Рм;
  • удельную теплоту бензина – У.

В этом варианте для расчета КПД двигателя формула преобразуется следующим образом:

Для отображения результата в % итоговое значение умножают на 100.

Если мощность силового агрегата не известна, определять эффективность можно по массе авто (Mа). Измерять ее несложно с помощью промышленных весов (на станции техосмотра, элеваторе). В ходе эксперимента разгоняются с места до контрольной скорости (v). Массу топлива вычисляют по объему (переведенному из литров в м кв.), который умножают на плотность (справочная величина в кг на куб. м).

В этом случае КПД расчет находят по формуле:

η = (Mа * v2)/(2 * У * m).

Следует перевести предварительно скорость из км/час в м/с.

Проще измеряется эффективность электродвигателя с паспортной мощностью (P). Его подключают к источнику питания с известным напряжением (U). После выхода на стабильную частоту вращения фиксируют значение тока (I) в цепи. Далее применяют классическую формулу:

Если сопроводительная документация отсутствует, технические параметры берут с официального сайта производителя. Однако и в этом случае следует понимать ограниченную точность подобных данных. В процессе эксплуатации характеристики могут ухудшиться за счет естественного износа. Погрешность увеличивается после длительной интенсивной эксплуатации, при подключении редуктора или другого переходного устройства.

Значительно улучшить точность можно с применением простой методики:

  • устанавливают на вал шкив с закрепленным тросом;
  • поднимают на контрольную высоту (h) груз c массой m;
  • секундомером фиксируют время (t) на выполнение этой работы;
  • мультиметром измеряют напряжение (U) и силу тока (I) на клеммах источника питания и в разрыве цепи, соответственно.

Для нахождения КПД в физике формула выглядит следующим образом:

η = (m * h * g)/(I * U * t),

где g – это гравитационная постоянная (9,80665).

Эффективность любого силового агрегата определяют по соотношению полезной работы к расходованной энергии. Чтобы корректно определять класс техники, пользуются переводом в проценты. Следует подчеркнуть, что значение больше 100% обозначает ошибку в расчетах. Создатель подобного агрегата станет «властелином мира», так как изобретет вечный двигатель.

Нахождения тока в полной цепи

По физике известно, что любой генератор тока имеет свое сопротивление, которое еще принято называть внутренняя мощность. Помимо этого значения, источник электричества также имеет свою силу.

Дадим значения каждому элементу цепи:

  • сопротивление – r;
  • сила тока – Е;
  • резистор (внешняя нагрузка) – R.

Полная цепь

Итак, чтобы найти силу тока, обозначение которого будет – I, и напряжение на резисторе – U, потребуется время – t, с прохождением заряда q = lt.

Рассчитать работу источника тока можно по следующей формуле:

A = Eq = EIt.

В связи с тем, что сила электричества постоянна, работа генератора целиком преобразуется в тепло, выделяемое на R и r. Такое количество можно рассчитать по закону Джоуля-Ленца:

Q = I2 + I2 rt = I2 (R + r) t.

Затем приравниваются правые части формулы:

EIt = I2 (R + r) t.

Осуществив сокращение, получается расчет:

E = I(R + r).

Произведя у формулы перестановку, в итоге получается:

I = E R + r.

Данное итоговое значение будет являться электрической силой в данном устройстве.

Произведя таким образом предварительный расчет, теперь можно определить КПД.

Почему производительность труда так важна в деятельности каждой организации

Производительность труда – это эффективность работы персонала в той или иной отрасли производства и рынка услуг отображается количественным числом изготовленной продукции или проданных услуг конкретным сотрудником за определенный период времени. В основном рассчитывают этот показатель за месяц работы и сравнивают с результатами работы других сотрудников, что работают на аналогичных должностях и имеют те же трудовые обязанности в количественном числе.

Обратным показателем величины производительности труда персонала является трудоемкость. Трудоемкость – это период времени (его количество) на изготовление одной единицы продукции или услуги (в зависимости от сферы деятельности сотрудника в организации).

Если увеличивается эффективность работы персонала организации, то соответственно снижается количество затрат рабочего времени, себестоимость изготавливаемой продукции значительно снижается, повышается общая экономическая эффективность производства.

Эффективность работы персонала прямо влияет на производственный цикл и его обороты. Чем быстрее происходит оборот средств (оборотных), тем скорее эти оборотные средства “освобождаются” из процесса оборота.

На темпы увеличения оборота оборотных средств влияют следующие показатели:

  • увеличения количества и объемов продаж;
  • работа над снижением затрат человеческих ресурсов на изготовление продукции или услуг;
  • постоянное усовершенствование качества и конкурентных способностей товаров и услуг;
  • общее сокращение и ускорение темпов производственного цикла;
  • усовершенствование систем снабжения и сбыта и т.д.

Во всех компаниях постоянно стараются увеличивать количество изготавливаемой продукции или предлагаемых услуг за конкретный период времени, а это в свою очередь сокращает статью по затратах на изготовление одной ее единицы.

В конце каждого месяца отделы кадров (или иные отдели по рекрутингу) проводят статистику по производительности труда персонала в той или иной области. Это могут быть различные производственные отделы в одной и той же фирме. Практикуют методы “слабого звена”: с сотрудниками, с наименьшими показателями по производительности труда персона, проводятся дополнительные обучения, применяются системы штрафов и т.д.

Компаниям не выгодно оплачивать труд персонала, с низкой эффективностью работы, так как это прямо влияет на получение общей прибыли. В то же время сотрудников, с хорошими показателями по производительности труда, постоянно поощряют в виде премий, бонусов, дополнительных отпусков и других видов бонусных программ.

Падение КПД и общие потери в электродвигателе

Существует множество негативных факторов, под влиянием которых складывается количество общих потерь в электрических двигателях. Существуют специальные методики, позволяющие заранее их определить. Например, можно определить наличие зазора, через который мощность частично подается из сети к статору, и далее — на ротор.

Потери мощности, возникающие в самом стартере, состоят из нескольких слагаемых. В первую очередь, это потери, связанные с и частичным перемагничиванием сердечника статора. Стальные элементы оказывают незначительное влияние и практически не принимаются в расчет. Это связано со скоростью вращения статора, которая значительно превышает скорость магнитного потока. В этом случае ротор должен вращаться в строгом соответствии с заявленными техническими характеристиками.

Значение механической мощности вала ротора ниже, чем электромагнитная мощность. Разница составляет количество потерь, возникающих в обмотке. К механическим потерям относятся трения в подшипниках и щетках, а также действие воздушной преграды на вращающиеся части.

Для асинхронных электродвигателей характерно наличие дополнительных потерь из-за наличия зубцов в статоре и роторе. Кроме того, в отдельных узлах двигателя возможно появление вихревых потоков. Все эти факторы в совокупности снижают КПД примерно на 0,5% от номинальной мощности агрегата.

При расчете возможных потерь используется и формула КПД двигателя, позволяющая вычислить уменьшение этого параметра. Прежде всего учитываются суммарные потери мощности, которые напрямую связаны с нагрузкой двигателя. С возрастанием нагрузки, пропорционально увеличиваются потери и снижается коэффициент полезного действия.

В конструкциях асинхронных электродвигателей учитываются все возможные потери при наличии максимальных нагрузок. Поэтому диапазон КПД этих устройств достаточно широкий и составляет от 80 до 90%. В двигателях повышенной мощности этот показатель может доходить до 90-96%.

Коэффициент полезного действия это характеристика эффективности работы, какого либо устройства или машины. КПД определяется как отношение полезной энергии на выходе системы к общему числу энергии подведенной к системе. КПД величина безразмерная и зачастую определяется в процентах.

Формула 1 — коэффициент полезного действия

Где—A полезная работа

Q суммарная работа, которая была затрачена

Любая система, совершающая какую либо работу, должна из вне получать энергию, с помощью которой и будет совершаться работа. Возьмем, к примеру, трансформатор напряжения. На вход подается сетевое напряжение 220 вольт, с выхода снимается 12 вольт для питания, к примеру, лампы накаливания. Так вот трансформатор преобразует энергию на входе до необходимого значения, при котором будет работать лампа.

Но не вся энергия, взятая от сети, попадет к лампе, поскольку в трансформаторе существуют потери. Например, потери магнитной энергии в сердечнике трансформатора. Или потери в активном сопротивлении обмоток. Где электрическая энергия будет переходить в тепловую не доходя до потребителя. Эта тепловая энергия в данной системе является бесполезной.

Поскольку потерь мощности избежать невозможно в любом системе то коэффициент полезного действия всегда ниже единицы.

КПД можно рассматривать как для всей системы целиком, состоящей из множество отдельных частей. Так и определять КПД для каждой части в отдельности тогда суммарный КПД будет равен произведению коэффициентов полезного действия всех его элементов.

В заключение можно сказать, что КПД определяет уровень совершенства, какого либо устройства в смысле передачи или преобразования энергии. Также говорит о том, сколько энергии подводимой к системе расходуется на полезную работу.

КПД дизельного двигателя – заметная эффективность

Показатель КПД для разных двигателей отличается и зависит от некоторых факторов. Бензиновые агрегаты имеют относительно низкий КПД, поскольку для них характерно большое количество тепловых и механических потерь, образующихся в процессе функционирования силовой установки данного типа.

Второй фактор – трение, возникающее в результате взаимодействия сопряженных деталей. Дополнительные потери вызваны работой других систем, механизмов и навесного оборудования и т.д.

Если сравнить дизельный мотор и бензиновый, то КПД дизеля значительно превышает КПД бензиновой установки. Бензиновые моторы имеют КПД в пределах 25% от количества полученной энергии. Иными словами, из потраченных в процессе функционирования мотора двигателя 10 л бензина только 3 л израсходованы на выполнение полезной для системы работы. Остальная часть энергии, образовавшаяся от сгорания бензина, разошлась на различные потери.

Что касается КПД дизельного агрегата атмосферного, то этот показатель достаточно высокий и составляет до 40%. Установка современного турбокомпрессора позволяет эту отметку увеличить до внушительных 50%. Современные системы топливного впрыска, установленные на дизельных ДВС, в совокупности с турбиной позволяют добиться КПД даже 55%.

Такая существенная разница в производительности конструктивно похожих дизельных и бензиновых ДВС обусловлена рядом факторов, к ним относятся:

  • Вид топлива.
  • Способ образования топливно-воздушной смеси.
  • Реализация воспламенения заряда.

Агрегаты, работающие на бензине, более оборотистые, чем дизельные, но имеют более существенные потери, которые вызваны расходом энергии на тепло. Соответственно, полезная энергия бензина менее эффективно преобразуется в полноценную механическую работу, в то же время большая доля рассеивается системой охлаждения.

Мощность и КПД

Мощность механизма или устройства равна работе, совершаемой в единицу времени. Работа(A) измеряется в Джоулях, а время в системе Си – в секундах. Но не стоит путать понятие мощности и номинальной мощности. Если на чайнике написана мощность 1 700 Ватт, это не значит, что он передаст 1 700 Джоулей за одну секунду воде, налитой в него. Это мощность номинальная. Чтобы узнать η электрочайника, нужно узнать количество теплоты(Q), которое должно получить определенное количество воды при нагреве на энное количество градусов. Эту цифру делят на работу электрического тока, выполненную за время нагревания воды.

Величина A будет равна номинальной мощности, умноженной на время в секундах. Q будет равно объему воды, умноженному на разницу температур на удельную теплоемкость. Потом делим Q на A тока и получаем КПД электрочайника, примерно равное 80 процентам. Прогресс не стоит на месте, и КПД различных устройств повышается, в том числе бытовой техники.

Напрашивается вопрос, почему через мощность нельзя узнать КПД устройства. На упаковке с оборудованием всегда указана номинальная мощность. Она показывает, сколько энергии потребляет устройство из сети. Но в каждом конкретном случае невозможно будет предсказать, сколько конкретно потребуется энергии для нагрева даже одного литра воды.

Например, в холодной комнате часть энергии потратится на обогрев пространства. Это связано с тем, что в результате теплообмена чайник будет охлаждаться. Если, наоборот, в комнате будет жарко, чайник закипит быстрее. То есть КПД в каждом из этих случаев будет разным.

Базовые компоненты ESTEC

Бензиновый двигатель Газель Некст 2.7 л. устройство ГРМ, технические характеристики Evotech 2.7

Основными конструктивными особенностями ESTEC являются цикл Аткинсона, геометрическая степень сжатия 13,5:1 и система EGR с жидкостным охлаждением (обычный 1NR-FE имеет степень сжатия 11,5:1 и внутреннюю рециркуляцию выхлопных газов). Система бесступенчатого регулирования фаз VVT-iE с электроприводом является ключевым элементом в реализации цикла Аткинсона. Она позволяет быстро и с высокой точностью регулировать подъем впускных клапанов и избежать затруднений, возникающих из-за разницы температуры и давления масла при холодном пуске и на прогретом моторе.

В системе рециркуляции выхлопных газов используется эффективный охладитель и быстродействующий клапан. Кроме того, впускной трубопровод, охладитель и клапан непосредственно соединены между собой для уменьшения образования конденсата от охладителя.

Оптимизированная форма впускных каналов обеспечивает быстрое наполнение цилиндров, а создаваемое завихрение способствует улучшенному сгоранию смеси. Чтобы удовлетворить требованиям, как к производительности, так и к расходу топлива, выпускной коллектор выполнен по схеме 4-2-1. Это позволяет уменьшить количество остаточных газов в цилиндрах двигателя.

Восстановление производительности

Увеличение степени сжатия до 13,5:1 снизило крутящий момент со 104 Нм до 96 Нм. Чтобы восполнить эту потерю, Toyota применила выпускной коллектор измененной формы, уменьшающий количество остаточных газов и температуру в цилиндре; новую водяную рубашку, поддерживающую оптимальную температуру поверхности цилиндров; оптимизацию времени впрыска. Комбинация этих мер (из которых главную роль играет измененный выпускной коллектор) позволила повысить крутящий момент до 105 Нм.

При малых нагрузках из-за работы охлаждаемой EGR происходят чрезмерные колебания крутящего момента. Для устранения этого недостатка используются система регулирования выпускных клапанов (Exhaust VVT) и внутренняя рециркуляция выхлопных газов. При средних и больших нагрузках работа Exhaust VVT приостанавливается, а шаг клапана системы EGR увеличивается.

Охлаждение является эффективной мерой против снижения крутящего момента у двигателей с высокой степенью сжатия. Однако одновременно это приводит к увеличению расхода топлива из-за повышения трения и потерь на охлаждение. В обычных моторах верхняя часть цилиндра нагревается больше, чем нижняя. Из-за неравномерного нагрева увеличивается трение в цилиндре. В ESTEC новая водяная рубашка со специальной прокладкой выравнивает температуру в разных частях поверхности цилиндра, снижая потери на трение и возможность возникновения детонации.

Цикл Аткинсона

Цикл Аткинсона

В двигателе, работающем по циклу Аткинсона, на такте впуска впускной клапан закрывается не вблизи НМТ, а значительно позже. Это дает целый ряд преимуществ.

Во-первых, снижаются насосные потери, т. к. часть смеси, когда поршень прошел НМТ и начал движение вверх, выталкивается назад во впускной коллектор (и используется затем в другом цилиндре), что снижает в нем разрежение. Горючая смесь, выталкиваемая из цилиндра, также уносит с собой часть тепла с его стенок.

Так как длительность такта сжатия по отношению к такту рабочего хода уменьшается, то двигатель работает, по так называемому, циклу с увеличенной степенью расширения, при котором энергия отработанных газов используется более длительное время, т. е., с уменьшением потерь выпуска. Таким образом,получаем лучшие экологические показатели, экономичность и больший КПД, но меньшую мощность.

ФИЗИКА

§ 24. КПД теплового двигателя

Любой тепловой двигатель превращает в механическую энергию только незначительную часть энергии, которая выделяется топливом. Большая часть энергии топлива не используется полезно, а теряется в окружающем пространстве.

Тепловой двигатель состоит из нагревателя, рабочего тела и холодильника. Газ или пар, который является рабочим телом, получает от нагревателя некоторое количество теплоты.

Рабочее тело, нагреваясь, расширяется и совершает работу за счёт своей внутренней энергии. Часть энергии передаётся атмосфере — холодильнику — вместе с отработанным паром или выхлопными газами.

Рис. 29

Очень важно знать, какую часть энергии, выделяемой топливом, тепловой двигатель превращает в полезную работу. Чем больше эта часть энергии, тем двигатель экономичнее

Для характеристики экономичности различных двигателей введено понятие коэффициента полезного действия двигателя — КПД.

Отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя, называют коэффициентом полезного действия теплового двигателя.

Коэффициент полезного действия обозначают η (греч. буква «эта»).

КПД теплового двигателя определяют по формуле

где Ап — полезная работа, Q1 — количество теплоты, полученное от нагревателя, Q2 — количество теплоты, отданное холодильнику, Q1 — Q2 — количество теплоты, которое пошло на совершение работы. КПД выражается в процентах.

Например, двигатель из всей энергии, выделившейся при сгорании топлива, расходует на совершение полезной работы только одну четвёртую часть. Тогда коэффициент полезного действия двигателя равен ¼, или 25% .

КПД двигателя обычно выражают в процентах. Он всегда меньше единицы, т. е. меньше 100% . Например, КПД двигателей внутреннего сгорания 20—40%, паровых турбин — немногим выше 30%.

Вопросы

  1. Почему в тепловых двигателях только часть энергии топлива превращается в механическую энергию?
  2. Что называют КПД теплового двигателя?
  3. Почему КПД двигателя не может быть не только больше 100%, но и равен 100%?
  4. Какой такт работы двигателя внутреннего сгорания изображён на рисунке 29?

Упражнение 17

  1. Можно ли за счёт внутренней энергии тела, равной 200 Дж, совершить механическую работу в 200 Дж?
  2. Тепловая машина за цикл получает от нагревателя количество теплоты, равное 155 Дж, а холодильнику отдаёт количество теплоты, равное 85 Дж. Определите КПД машины.
  3. Определите количество теплоты, отданное двигателем внутреннего сгорания холодильнику, если его КПД равен 30%, а полезная работа равна 450 Дж.

Задание

Подготовьте доклад на одну из тем (по выбору). История изобретения паровых машин.

  • История изобретения турбин.
  • Первые паровозы Стефенсона и Черепановых.
  • Достижения науки и техники в строительстве паровых турбин.
  • Использование энергии Солнца на Земле.

Расчет КПД электрической цепи

Частота вращения: формула

После определения основных параметров можно перейти к изучению эффективности системы. Для вычисления КПД обозначение потребления электроэнергии удобно сделать по стандартным формулам.


Определить мощность можно по следующим соотношениям силы тока, напряжения, электрического сопротивления

Выполняемая работа в цепи определяется количеством перемещенных зарядов, а также скоростью данного процесса. Для объективной оценки последнего параметра измерения выполняют с учетом определенных временных интервалов (Δt). Работу и мощность можно определить следующими формулами:

  • A = P * Δt;
  • P = A / Δt.

Как и в классической механике, работу можно измерить в джоулях (Дж). Мощность, по стандартам СИ, указывают в ваттах (Вт). Зависимость между отмеченными единицами:

Вт = Дж/ с (для электрических цепей вольт * ампер).

Для обозначения КПД символ «η» применяют в типовых формулах. Базовое определение с учетом приведенных замечаний можно преобразовать следующим образом:

η = A / Q * 100%,

где:

  • A – выполненная работа;
  • Q – энергия, полученная из источника.


Как найти КПД, формула для полной цепи

Любое подключенное устройство характеризуется определенными потерями. Резистор выделяет тепло. Трансформатор тратит часть энергии на преобразование электромагнитных волн. На примере лампы накаливания показана низкая эффективность изделия. С применением КПД увеличивают объективность оценки разных систем, подключаемых потребителей, генераторов. В следующем пункте представлена технология проверки силовых агрегатов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector