Вязкость

Содержание:

Единицы измерения вязкости

Согласно международной системе СИ вязкость разделяют на динамическую и кинематическую. Первую измеряют в Па×с или сП (санти Пуазах), а вторую в см2/с или Ст (Стоксах). Существуют также внесистемные единицы измерения, такие как угол Энглера.

Для определения вязкости краски производители пользуются таким понятием как условная вязкость. Эта величина измеряется в секундах и используется, в основном, производителями отечественных лакокрасочных материалов. Условная она потому, что зависит от многих факторов: диаметра спускного отверстия вискозиметра, объема воронки вискозиметра, температуры окружающей среды и т.д.

Связь динамической и кинематической вязкости

Вязкость жидкости определяет способность жидкости сопротивляться сдвигу при ее движении, а точнее сдвигу слоев относительно друг друга

Поэтому на производствах, где требуется перекачка различных сред, важно точно знать вязкость перекачиваемого продукта и правильно подбирать насосное оборудование

В технике встречаются два вида вязкости.

  1. Кинематическая вязкость чаще используется в паспорте с характеристиками жидкости.
  2. Динамическая используется в инженерных расчетах оборудования, научно-исследовательских работах и т.д.

Перевод кинематической вязкости в динамическую производят с помощью формулы, указанной ниже, через плотность при заданной температуре:

v – кинематическая вязкость,

n – динамическая вязкость,

p – плотность.

Таким образом, зная ту или иную вязкость и плотность жидкости можно выполнить пересчет одного вида вязкости в другой по указанной формуле или через конвертер выше.

Измерение вязкости

Понятия для этих двух типов вязкости присуще только жидкостям в связи с особенностями способов измерения.

Измерение кинематической вязкости используют метод истечения жидкости через капилляр (например используя прибор Уббелоде). Измерение динамической вязкости происходит через измерение сопротивление движения тела в жидкости (например сопротивление вращению погруженного в жидкость цилиндра).

От чего зависит значение величины вязкости?

Вязкость жидкости зависит в значительной мере от температуры. С увеличением температуры вещество становится более текучим, то есть менее вязким. Причем изменение вязкости, как правило, происходит достаточно резко, то есть нелинейно.

Поскольку расстояние между молекулами жидкого вещества намного меньше, чем у газов, у жидкостей уменьшается внутреннее взаимодействие молекул из-за снижения межмолекулярных связей.

Форма молекул и их размер, а также взаимоположение и взаимодействие могут определять вязкость жидкости. Также влияет их химическая структура.

Например, для органических соединений вязкость возрастает при наличии полярных циклов и групп.

Для насыщенных углеводородов – рост происходит при “утяжелении” молекулы вещества.

Вязкость и от чего она зависит

Если говорить о вязкости жидкостей в принципе, то её измерение диктуется целым рядом факторов. К примеру, вязкость крови измеряют для одних целей, а вязкость ракетного топлива совсем для других. Именно по этому единица измерения вязкости жидкости может выражаться несколькими величинами и вычисляться по нескольким алгоритмам. Для тех жидкостей, которым этот параметр не принципиально важен, к примеру, вода.

Каждое вещество состоит из молекул, которые могут в определённых пределах сдвигаться друг относительно друга. Способность жидкости сопротивляться сдвигу частиц, из которых она состоит, называют вязкостью. Вязкость может зависеть от массы параметров, как внешних условий, так и внутренних свойств молекулярных связей в том или ином веществе. К примеру, вязкость любой жидкости в той или иной степени зависит от температуры, в то же время, на показатель вязкости влияет химический состав. Взаимодействие этих факторов и формирует коэффициент вязкости вещества.

Вязкость аморфных материалов

Вязкость аморфных материалов (например, стекла или расплавов) — это термически активизируемый процесс:

η ( T ) = A ⋅ exp ⁡ ( Q R T ) , {\displaystyle \eta (T)=A\cdot \exp \left({\frac {Q}{RT}}\right),}

где:

  • Q {\displaystyle Q} — энергия активации вязкости (Дж/моль);
  • T {\displaystyle T} — температура ();
  • R {\displaystyle R} — универсальная газовая постоянная (8,31 Дж/моль·К);
  • A {\displaystyle A} — некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости Q {\displaystyle Q} изменяется от большой величины Q H {\displaystyle Q_{H}} при низких температурах (в стеклообразном состоянии) на малую величину Q L {\displaystyle Q_{L}} при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда ( Q H − Q L ) < Q L {\displaystyle \left(Q_{H}-Q_{L}\right) , или ломкие, когда ( Q H − Q L ) ≥ Q L {\displaystyle \left(Q_{H}-Q_{L}\right)\geq Q_{L}} . Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса R D = Q H Q L {\displaystyle R_{D}={\frac {Q_{H}}{Q_{L}}}} : сильные материалы имеют R D < 2 {\displaystyle R_{D}<2} , в то время как ломкие материалы имеют R D ≥ 2 {\displaystyle R_{D}\geq 2} .

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:

η ( T ) = A 1 ⋅ T ⋅ ⋅ {\displaystyle \eta (T)=A_{1}\cdot T\cdot \left\cdot \left}

с постоянными A 1 {\displaystyle A_{1}} , A 2 {\displaystyle A_{2}} , B {\displaystyle B} , C {\displaystyle C} и D {\displaystyle D} , связанными с термодинамическими параметрами соединительных связей аморфных материалов.

В узких температурных интервалах недалеко от температуры стеклования T g {\displaystyle T_{g}} это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.

Вязкость

Если температура существенно ниже температуры стеклования T < T g {\displaystyle T , двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

η ( T ) = A L T ⋅ exp ⁡ ( Q H R T ) , {\displaystyle \eta (T)=A_{L}T\cdot \exp \left({\frac {Q_{H}}{RT}}\right),}

с высокой энергией активации Q H = H d + H m {\displaystyle Q_{H}=H_{d}+H_{m}} , где H d {\displaystyle H_{d}} — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а H m {\displaystyle H_{m}} — энтальпия их движения. Это связано с тем, что при T < T g {\displaystyle T аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.

При T ≫ T g {\displaystyle T\gg T_{g}} двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

η ( T ) = A H T ⋅ exp ⁡ ( Q L R T ) , {\displaystyle \eta (T)=A_{H}T\cdot \exp \left({\frac {Q_{L}}{RT}}\right),}

но с низкой энергией активации Q L = H m {\displaystyle Q_{L}=H_{m}} . Это связано с тем, что при T ≫ T g {\displaystyle T\gg T_{g}} аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Вязкость газов

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

η = 1 3 ⟨ u ⟩ ⟨ λ ⟩ ρ {\displaystyle \eta ={\frac {1}{3}}\langle u\rangle \langle \lambda \rangle \rho } ,

где ⟨ u ⟩ {\displaystyle \langle u\rangle } — средняя скорость теплового движения молекул, ⟨ λ ⟩ {\displaystyle \langle \lambda \rangle } − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность ρ {\displaystyle \rho } прямо пропорциональна давлению, а ⟨ λ ⟩ {\displaystyle \langle \lambda \rangle } — обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).

С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа u {\displaystyle u} , растущей с температурой как T {\displaystyle {\sqrt {T}}}

Влияние температуры на вязкость газов

В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).

Формула Сазерленда

может быть использована для определения вязкости идеального газа в зависимости от температуры:

μ = μ 0 T 0 + C T + C ( T T 0 ) 3 / 2 , {\displaystyle {\mu }={\mu }_{0}{\frac {T_{0}+C}{T+C}}\left({\frac {T}{T_{0}}}\right)^{3/2},}

где:

  • μ — динамическая вязкость в (Па·с) при заданной температуре T;
  • μ0 — контрольная вязкость в (Па·с) при некоторой контрольной температуре T0;
  • T — заданная температура в Кельвинах;
  • T0 — контрольная температура в Кельвинах;
  • C — постоянная Сазерленда для того газа, вязкость которого требуется определить.

Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.

Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже:

Газ C, K T0, K μ0, мкПа·с
Воздух 120 291,15 18,27
Азот 111 300,55 17,81
Кислород 127 292,25 20,18
Углекислый газ 240 293,15 14,8
Угарный газ 118 288,15 17,2
Водород 72 293,85 8,76
Аммиак 370 293,15 9,82
Оксид серы(IV) 416 293,65 12,54
Гелий 79,4 273 19

Коэффициенты

В абсолютных величинах единица кинематической вязкости может быть получена из соотношения кинематической к динамической вязкости, через плотность среды (формула 2.3). Следует помнить, что сама вязкая среда не подразделяется на кинетическую или динамическую. Оба значения могут быть рассчитаны для любого вещества. Учитывая тот факт, что при протекании среды создается сопротивление движению, можно построить вектор силы вязкого трения. В абсолютных величинах он прямо пропорционален площади движения среды S и ее скорости v, и обратно пропорционален расстоянию между плоскостями h (формула 2.4). Это значение называют коэффициентом динамической вязкости или коэффициентом пропорциональности. Знак минус указывает на противоположность приложения силы (направления вектора). Коэффициент кинематической вязкости, как правило, не рассчитывают. В редких случаях им называют уравнение соотношения (формула 2.3).

Society of Automobile Engineers

Сообществом автомобильных инженеров (SAE) предоставляется классификация моторных масел по их вязкости. Данный параметр очень важен: от того насколько вещество густое, зависит, в какие мелкие зазоры оно способно проникать, какое сопротивление воздействует на трущиеся детали, как результат, насколько повысится или понизится расход топлива. Вязкость масла зависит от температуры: чем она ниже – тем гуще становится вещество. Современные добавки (присадки) позволяют повлиять на этот параметр. И то, как ведут себя составы при разных термических условиях, определяет, при каких температурах их можно применять.

Маркировка SAE включает буквы и цифры, например 5W20 и пр. Расшифровка обозначения может быть проведена самостоятельно, также удобно пользоваться следующей таблицей:

Марка вязкости по SAE Расшифровка – температурный диапазон, °С
0W20 -35… +10-15
0W40 -35… +35
5W20 -25… +10-15
SAE 5W30 -25… +20
5W40 -25… +35
5W50 -25… +45 и выше
10W30 -20… +30
10W-40 -20… +35
10W60 -20… +45
15W-30 -15… +35
15W40 -15… +45
20W-40 -10… +45
20W50 -10… +45 и выше
SAE 30 0… +45

Первые цифры с буквой, например 40 W или 10W, означают температуру, при которой можно прокачивать масло через систему, т. е. это термические условия, при которых оно не слишком густое, чтобы вызвать перегрузку и затруднения в работе. Вторые цифры, например 10 или 40, означают вязкость масла при нагреве, т. е. во время работы.

Марки вязкости по SAE соответствуют ГОСТам:

Соответствие классов вязкости      
Класс вязкости Класс вязкости
SAE ГОСТ SAE ГОСТ
5W 33 5W20 24
10W 43 10W-20 33/8
15W 53 10W-20 43/6
20W 63 10W-20 43/8
20 6 15W-30 43/10
20 8 15W-30 53/10
30 10 15W-40 53/12
30 12 20W-40 53/14
40 14 20W-30 63/10
40 16 20W-40 63/14
50 20 20W-40 63/16

Что будет, если залить неподходящее вещество?

Использование неподходящего по вязкости масла грозит повышенным износом, поломкой двигателя и системы подачи масла. К примеру, если залить состав 10W, когда на улице -40°С, он слишком загустеет, насос не сможет перекачивать его с достаточной для обеспечения нормальной смазки скоростью. Кроме этого, загустевшее масло не будет проникать во все зазоры, из-за чего двигатель начнет быстро истираться. То же произойдет, если залить состав с неподходящей температурой работы. Например, масло 5W20, залитое в жару +40°С станет слишком жидким и не сможет компенсировать трение, может создаться его избыток.

Вязкость некоторых веществ

Для авиастроения и судостроения наиболее важно знать вязкости воздуха и воды

Вязкость воздуха

Зависимость вязкости сухого воздуха от давления при температурах 300, 400 и 500 K Вязкость воздуха зависит в основном от температуры. При 15,0 °C вязкость воздуха составляет 1,78·10−5 кг/(м·с), 17,8 мкПа·с или 1,78·10−5 Па·с. Можно найти вязкость воздуха как функцию температуры с помощью программ расчёта вязкостей газов.

Вязкость воды

Зависимость динамической вязкости воды от температуры в жидком состоянии (Liquid Water) и в виде пара (Vapor) Динамическая вязкость воды составляет 8,90·10−4 Па·с при температуре около 25 °C. Как функция температуры: T = A × 10B/(T−C), где A = 2,414·10−5 Па·с; B = 247,8 K; C = 140 K.

Значения вязкости жидкой воды при разных температурах вплоть до точки кипения приведены в таблице:

Температура, °C Вязкость, мПа·с
10 1,308
20 1,002
30 0,7978
40 0,6531
50 0,5471
60 0,4668
70 0,4044
80 0,3550
90 0,3150
100 0,2822

Динамическая вязкость разных веществ

Ниже приведены значения коэффициента динамической вязкости некоторых ньютоновских жидкостей: Вязкость отдельных видов газов

Газ при 0 °C (273 K), мкПа·с при 27 °C (300 K), мкПа·с
воздух 17,4 18,6
водород 8,4 9,0
гелий 20,0
аргон 22,9
ксенон 21,2 23,2
углекислый газ 15,0
метан 11,2
этан 9,5

Вязкость жидкостей при 25 °C

Жидкость Вязкость, Па·с Вязкость, мПа·с
ацетон 3,06·10−4 0,306
бензол 6,04·10−4 0,604
кровь (при 37 °C) (3—4)·10−3 3—4
касторовое масло 0,985 985
кукурузный сироп 1,3806 1380,6
этиловый спирт 1.074·10−3 1.074
этиленгликоль 1,61·10−2 16,1
глицерин (при 20 °C) 1,49 1490
мазут 2,022 2022
ртуть 1,526·10−3 1,526
метиловый спирт 5,44·10−4 0,544
моторное масло SAE 10 (при 20 °C) 0,065 65
моторное масло SAE 40 (при 20 °C) 0,319 319
нитробензол 1,863·10−3 1,863
жидкий азот (при 77K) 1,58·10−4 0,158
пропанол 1,945·10−3 1,945
оливковое масло 0,081 81
пек 2,3·108 2,3·1011
серная кислота 2,42·10−2 24,2
вода 8,94·10−4 0,894

Относительная вязкость

Относительная вязкость – это отношение коэффициентов динамической вязкости определяемого раствора (μ) к коэффициенту динамической вязкости чистого растворителя (μ0) при определенных условиях.

В США распространено измерение вязкости в универсальных секундах Сейболта (УСС, SSU или SUS). Для этого используется специальный вискозиметр с калиброванным отверстием, через которое пропускается 60 см3 исследуемого образца при 37,8 °С (100 °F) или при 98,9 °С (210 °F) и засекается время его истечения (ASTM D88).

Секунды Сейболта FUROL (SSF) — единицы измерения вязкости на соответствующем вискозиметре Сейболта FUROL, который отличается от универсального вискозиметра Сейболта в два раза большим отверстием истечения. Он используются для более вязких веществ, например, для котельных топлив.

Вязкость жидкости

Вязкость жидкости — это свойство, проявляющееся только при движении жидкости, и не влияющее на покоящиеся жидкости. Вязкое трение в жидкостях подчиняется закону трения, принципиально отличному от закона трения твёрдых тел, т.к. зависит от площади трения и скорости движения жидкости.
Вязкость – свойство жидкости оказывать сопротивление относительному сдвигу ее слоев. Вязкость проявляется в том, что при относительном перемещении слоев жидкости на поверхностях их соприкосновения возникают силы сопротивления сдвигу, называемые силами внутреннего трения, или силами вязкости. Если рассмотреть то, как распределяются скорости различных слоёв жидкости по сечению потока, то можно легко заметить, что чем дальше от стенок потока, тем скорость движения частиц больше. У стенок потока скорость движения жидкости равна нулю. Иллюстрацией этого является рисунок, так называемой, струйной модели потока.

Медленно движущийся слой жидкости «тормозит» соседний слой жидкости, движущийся быстрее, и наоборот, слой, движущийся с большей скоростью, увлекает (тянет) за собой слой, движущийся с меньшей скоростью. Силы внутреннего трения появляются вследствие наличия межмолекулярных связей между движущимися слоями.
Если между соседними слоями жидкости выделить некоторую площадку S, то согласно гипотезе Ньютона:

F=μ•S•(du/dy),

где:

  • μ — коэффициент вязкого трения;
  • S – площадь трения;
  • du/dy — градиент скорости

Величина μ в этом выражении является динамическим коэффициентом вязкости, равным:

μ=F/S•1/du/dy,

или

μ=τ•1/du/dy,

где:

τ – касательное напряжение в жидкости (зависит от рода жидкости).

Физический смысл коэффициента вязкого трения

Физический смысл коэффициента вязкого трения — число, равное силе трения, развивающейся на единичной поверхности при единичном градиенте скорости.

На практике чаще используется кинематический коэффициент вязкости, названный так потому, что в его размерности отсутствует обозначение силы. Этот коэффициент представляет собой отношение динамического коэффициента вязкости жидкости к её плотности:

ν=μ/ρ,

Единицы измерения коэффициента вязкого трения:

  • Н·с/м2;
  • кГс·с/м2
  • Пз (Пуазейль) 1(Пз)=0,1(Н·с/м2).

Анализ свойства вязкости жидкости

Для капельных жидкостей вязкость зависит от температуры t и давления Р, однако последняя зависимость проявляется только при больших изменениях давления, порядка нескольких десятков МПа.

Зависимость коэффициента динамической вязкости от температуры выражается формулой вида:

μt=μ•e-kt(T-T),

где:

  • μt — коэффициент динамической вязкости при заданной температуре;
  • μ — коэффициент динамической вязкости при известной температуре;
  • Т — заданная температура;
  • Т — температура, при которой измерено значение μ;
  • e – основание натурального логарифма равное 2,718282.

Зависимость относительного коэффициента динамической вязкости от давления описывается формулой:

μр=μ•e-kр(Р-Р),

где:

  • μР — коэффициент динамической вязкости при заданном давлении,
  • μ — коэффициент динамической вязкости при известном давлении (чаще всего при нормальных условиях),
  • Р — заданное давление,;
  • Р — давление, при которой измерено значение μ;
  • e – основание натурального логарифма равное 2,718282.

Влияние давления на вязкость жидкости проявляется только при высоких давлениях.

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье — Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье):

σij=η•(dvi/dxi+dvj/dxi),

где σij — тензор вязких напряжений.

Среди неньютоновских жидкостей, по зависимости вязкости от скорости деформации различают псевдопластики и дилатантные жидкости. Моделью с ненулевым напряжением сдвига (действие вязкости подобно сухому трению) является модель Бингама. Если вязкость меняется с течением времени, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.

С повышением температуры вязкость многих жидкостей падает. Это объясняется тем, что кинетическая энергия каждой молекулы возрастает быстрее, чем потенциальная энергия взаимодействия между ними. Поэтому все смазки всегда стараются охладить, иначе это грозит простой утечкой через узлы.

Вязкость жидкостей (при 18°C)

Вещество Вязкость 10 -5 кг/(м*с)
Анилин 4,6
Ацетон 0,337
Бензол 0,673
Бром 1,02
Вода 1,05
Гелий 1,89
Глицерин 1400
Масло машинное легкое 113
Масло машинное тяжелое 660
Масло оливковое 90
Масло оливковое 90
Пентан 0,244
Ртуть 1,59
Спирт этиловый 1,22
Уксусная кислота 1,27
Эфир этиловый 0,238

Вязкость различных видов краски

Оптимальные значения смотрите в таблице

Современный рынок предлагает огромное количество красок, подходящих для обработки различных поверхностей и имеющих разнообразный состав и характеристики. Перечислим основные виды лакокрасочных материалов:

  • алкидные эмали — основу этого лакокрасочного материала составляют алкидные лаки или смолы, пигменты и органический растворитель;
  • нитроэмали сделаны на основе коллоксилина — особого вида нитроцеллюлозы с низким показателем вязкости, для разбавления также, как и предыдущему, подходят различные растворители типа Вайт Спирит, ацетон и т.д.;
  • водоэмульсионные краски — краски на водной основе, популярны благодаря приемлемой цене и низкой токсичности;
  • акриловые краски — в основе этих красок лежит синтетический полимер, однако, они хорошо разбавляются водой;
  • масляные краски разбавляют олифой или другими маслами. Содержат в своем составе токсичные пигменты, однако яркие и стойкие цвета этих красок делают их популярными.

Все эти лакокрасочные материалы имеют свою вязкость. Так, например, краски на водной основе имеют условную вязкость 20-25 с (din), а для масляной краски эта характеристика будет составлять 18-22 с. Таблица вязкости краски чаще всего прилагается к прибору для измерения вязкости. Для разбавления большинства видов краски используют органические растворители. Лучше выбирать те, которые указаны в спецификации или на упаковке краски, чтобы не испортить пигмент и сохранить основные характеристики продукции. Разбавлять краску следует при постоянном перемешивании для чего можно использовать стеклянную палочку или линейку. Не стоит для перемешивания брать деревянные или пластиковые предметы. От дерева в краске могут остаться крошки и она потеряет однородность, а пластик может раствориться в органических средах и испортить пигмент краски.

  • Подойдут для перемешивания и металлические предметы, но с них предварительно нужно снять заусеницы.
  • Проводить разбавление краски нужно в чистой таре без механических повреждений.
  • Для двухкомпонентных смесей (лаки, эмали) помимо растворителя используют специальный отвердитель, который вносят в первую очередь.

Кинематическая и динамическая вязкость, их определение

Вязкость любой жидкости характеризуют динамический и кинематический коэффициенты. В лабораторной системе измерений единицей измерения кинематического коэффициента вязкости считают сантистокс. Показатель вычисляют в диапазоне температур от 40 до 120 градусов. Этот параметр определяется с помощью капиллярного вискозиметра путём замера количества вытекающей жидкости через калиброванное отверстие при определённой температуре за определённый промежуток времени.

Абсолютная, или динамическая вязкость, определяется без учёта плотности вещества. Этот коэффициент выражает сопротивление, возникающее при перемещении жидкостей на определённой скорости, которые находятся на расстоянии 1 см друг от друга. Для измерения динамической вязкости применяют ротационный вискозиметр. В лабораторных условиях и тот и другой коэффициент могут иметь множество размерностей, в зависимости от сферы применения жидкости:

  • динамическая вязкость может выражаться в паскаль/секундах, пуазах, сантипуазах;

  • кинематическая вязкость выражается в градусах Энглера, секундах Сейболта, стоксах, сантистоксах, квадратных сантиметрах в секунду.

Ньютоновские и неньютоновские среды

Ньютоновская жидкость – это такая жидкость, вязкость которой можно высчитать с помощью формулы Ньютона.

К таким средам относятся вода и растворы. Коэффициент вязкости жидкости в таких средах может зависеть от таких факторов, как температура, давление или строение атома вещества, однако градиент скорости всегда останется неизменным.

Неньютоновские жидкости – это такие среды, в которых упомянутое выше значение может изменяться, а значит, формула Ньютона здесь действовать не будет. К таким веществам относятся все дисперсные среды (эмульсии, аэрозоли, суспензии). Сюда же относится и кровь. Об этом более подробно поговорим далее.

Определение вязкости масла

О том, что любой смазочный материал должен препятствовать такому явлению, как сухое трение между движущимися и соприкасающимися деталями, знают даже школьники. В отношении автомобильного двигателя задача масла соответствующая – уменьшить силу трения в цилиндропоршневой группе при обеспечении максимальной герметичности цилиндров. Решение этой задачи не выглядит тривиальным, поскольку силовой агрегат вынужден работать в очень широком температурном диапазоне, от минусовых (холодный двигатель, пуск зимой) до плюс 300ºС – такой режим характерен для некоторых узлов прогретого мотора.

Отметим, что многие водители убеждены, что та температура, которая отображается на шкале прибора, измеряет температуру самого двигателя. Это, конечно же, заблуждение – датчик измеряет только температуру тосола. А она действительно на прогретом моторе практически одинакова во всём контуре и составляет примерно 90 градусов. Узлы же силового агрегата греются по-разному. Соответственно, и температура моторного масла тоже «гуляет», причём в достаточно широких пределах, доходя до значений порядка 150ºС.

А поскольку современные двигатели представляют собой достаточно сложную конструкцию, их производители рекомендуют использовать смазочные жидкости с вполне определёнными эксплуатационными характеристиками. Именно они обеспечивают максимально возможный КПД двигателя за счёт уменьшения силы трения, способствуя снижению износа трущихся деталей при среднестатистических нагрузках на мотор.

И важнейшей из этих характеристик является вязкость ММ. Самое простое и понятное определение вязкости следующее: это способность масла сохранять свою текучесть в заданных условиях работы, оставаясь на поверхности трущихся деталей. Добиться этого не сложно, если бы не динамически изменяемый температурный режим: на непрогретом двигателе он один, при работе в штатном режиме – другой – при повышенных нагрузках – третий.

Понятно, что изобрести некий универсальный состав, который бы одинаково хорошо работал независимо от внешних условий, невозможно.

А чтобы и автопроизводители, и потребители имели возможность как-то оценивать вязкость конкретных масел, Ассоциация автоинженеров США (SAE) разработала и внедрила классификацию ММ по их вязкости, в соответствии с определёнными температурными режимами работы. Другими словами, классификация упрощает выбор масла в зависимости от предпочтительного режима эксплуатации автомобиля.

У многих водителей вызывает затруднение расшифровка вязкости масла, указываемая на маркировке смазочных жидкостей для мотора в соответствии с классификацией по SAE. Как правило она начинается с одной или двух цифр, за которыми следует буква W, а через тире следует ещё одна пара цифр.

Рассмотрим на простом и доступном уровне, что означают эти цифры в отношении вязкости масла. То, что стоит до буквы W – так называемая низкотемпературная вязкость, указывающая на возможность запуска мотора при определённой отрицательной температуре (вычислить её можно, отняв от указанной цифры значение 40). То есть 5W обозначает, что такая жидкость обеспечивает беспроблемный пуск двигателя при температуре не ниже минус 40 градусов.

Отметим, что данный показатель касается только нижнего порога температур для холодного мотора, не влияя на рабочие характеристики масла, используемого на горячем силовом агрегате. Но опять же, производители масел рассчитывают этот параметр на основании испытаний на конкретных моторах, поэтому он является, так сказать, усреднённым. В действительности всё зависит от конкретного мотора, поэтому ориентироваться нужно на рекомендации автопроизводителя, а не на маркировку. Отметим, что, если в конкретном регионе максимальные морозы не превышают -20°С, можно использовать ММ с практически любым префиксом, поскольку масла с индексом, большим 20W, встречаются на рынке очень редко.

Вторая группа цифр указывает на высокотемпературный показатель вязкости, однако здесь нет прямой зависимости от температуры. Он обозначает некий обобщённый параметр, характеризующий минимальную/максимальную вязкость ММ при функционировании в рабочем диапазоне температур (а это в среднем 100-150 градусов). Чем выше этот показатель, тем больше вязкость масла при работе в более высоком температурном режиме. А слишком жидкое масло не сможет обеспечить выполнение своих непосредственных обязанностей – смазывать трущиеся поверхности. Так что интерпретация второго пары цифр даже среди специалистов вызывает определённые разногласия, и совет придерживаться рекомендаций автопроизводителей здесь ещё более актуален.

Общие сведения

Вязкие сливки, налитые в кофе с меньшей вязкостью

Вязкость — свойство жидкостей противостоять силе, которая вызывает их текучесть. Вязкость подразделяют на два типа — на динамическую и кинематическую. В отличие от кинематической вязкости, динамическая или абсолютная вязкость — независима от плотности жидкости, так как она определяет внутреннее трение в жидкости. Абсолютная вязкость часто связана с напряжением сдвига, то есть напряжением, которое вызвано силой, действующей параллельно поперечному сечению тела, или, в нашем случае, жидкости. Для примера, представим жидкость настолько вязкую, что на протяжении нескольких минут она может держать форму, например куба, практически без изменений. Это может быть, например, густое фруктовое повидло. Положим этот куб на тарелку, и проведем по его верхней стороне рукой параллельно этой стороне. Сила, с которой рука действует на повидло, вызывает напряжение сдвига. Так как повидло очень вязкое, то оно потянется за рукой и куб изменит свою форму. То есть вязкость — это свойство повидла не растекаться, а, наоборот, следовать движению руки.

В основном вязкость — это свойство жидкостей и газов, хотя иногда твердые тела также описывают с помощью вязкости. Особенно это свойство присуще телам, если они подвергаются малому, но постоянному напряжению, и их форма постепенно искажается. Высокая вязкость вещества характеризуется высоким сопротивлением напряжению сдвига.

Когда говорят о вязкости вещества, то обязательно указывают температуру, при которой тело имеет эту вязкость, так как это свойство изменяется в зависимости от температуры. Например, гораздо легче размешать теплый мед, чем холодный, так как он менее вязок. То же происходит и со многими маслами. К примеру, оливковое масло при комнатной температуре совсем не вязкое, но в холодильнике его вязкость заметно увеличивается.

Вода — ньютоновская жидкость

Ньютоновские и неньютоновские жидкости

Кода говорят о вязкости, различают два типа жидкостей: ньютоновские и неньютоновские. Вязкость первых не зависит от силы, на них действующей. Со вторыми дело обстоит сложнее, так как в зависимости от величины этой силы и от того, как она приложена, они становятся более или менее вязкими. Хороший пример неньютоновской жидкости — сливки. В обычных условиях они почти совсем не вязкие. Их вязкость не изменяется, даже если приложить к ним небольшую силу, например, медленно мешать их ложкой. Если же увеличить эту силу, например если мешать их миксером, то вязкость также начнет постепенно увеличиваться, пока не станет настолько велика, что сливки смогут держать форму (взбитые сливки). Также ведут себя и сырые яичные белки.

Практическое применение вискозиметрам

Определение вязкости жидкости имеет большое практическое значение в нефтеперерабатывающей промышленности

При работе с многофазными, дисперсными средами важно знать их физические свойства, особенно внутреннее трение. Современные вискозиметры сделаны из прочных материалов, при их производстве задействуются передовые технологии

Все это в совокупности позволяет работать с высокой температурой и давлением без вреда для самого оборудования.

Вязкость жидкости играет большую роль в промышленности, потому что транспортировка, переработка и добыча, например, нефти зависят от значений внутреннего трения жидкостной смеси.

Вязкость мыла

Мыло — твердый либо жидкий продукт, который содержит поверхностно-активные вещества. При соединении с водой он ведет себя как косметическое средство, очищающее кожу (туалетное мыло), или же как моющее средство бытовой химии (хозяйственное мыло). В последнее время данный продукт массового использования все больше применяется именно в жидком виде.

По химическому составу мыло представляет собой натриевые либо калиевые соли высших карбоновых кислот, которые получают в процессе гидролиза жиров в щелочной среде. Также оно может содержать ароматизаторы, красители и прочие ингредиенты.

Вязкость мыльных растворов зависит не только от температуры. Этот показатель растет с повышением концентрации мыла. Включение в мыльные растворы небольшого объема электролитов снижает вязкость, а введение их большого количества ведет к повышению вязкости и последующему высаливанию продукта.

Вязкость сыра

Сыр — это пищевой продукт, получаемый из молока путем введения молочнокислых бактерий, ферментов, способствующих его свертыванию, либо посредством плавления молочных продуктов.

Сыры классифицируются на твердые, мягкие, плавленые, рассольные. Показатель вязкости целесообразно рассматривать у плавленых сыров.

Вязкость данного продукта снижается при повышении содержания в нем влаги. На нее также влияет зрелость исходного сырья, вид и доза солей-плавителей, активная кислотность сыра. В слабой степени на вязкость влияет содержание в сырье жира, хотя он и увеличивает пластичность сырной массы.

Динамическая вязкость газов и паров в интервале температуры от -220 до 1000°С

В таблице представлена динамическая вязкость газов и паров в зависимости от температуры (при отрицательной и положительной температуре).

Динамическая вязкость газов в таблице выражена в Па·сек с множителем 10-8. Например, коэффициент динамической вязкости азота N2 при нормальных условиях (при температуре 0°С и нормальном атмосферном давлении) равен 1665·10-8 или 0,00001665 Па·с.

Указана динамическая вязкость следующих газов и паров: азот N2, окись азота NO, закись азота N2O5, аммиак NH3, аргон Ar, водород H2, водяной пар H2O, воздух, гелий He, кислород O2, криптон Kr, ксенон Xe, метан CH4, неон Ne, сернистый газ SO2, углекислый газ CO2, окись углерода CO, этан C2H6, этилен C2H4.

По данным таблицы видно, что наиболее вязким газом при комнатной температуре является газ неон — вязкость неона равна 3113·10-8 Па·с.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector