Вязкость жидкости

Содержание:

2.1. Основные свойства капельных жидкостей

Основная система единиц, применяемая в настоящее время это система СИ. Основными механическими единицами системы СИ являются: длина, измеряемая в метрах, масса, измеряемая в кг, время, измеряемое в секундах.

1. Плотностью

называется масса вещества, содержащаяся в единице объема. Различают абсолютную и относительную плотность. Абсолютная плотность для однородной жидкости равняется величине массыМ жидкости в объемеV, поделенной на величину этого объемаV Плотность измеряется в системе СИ в кг/м 3 , плотность пресной воды при 4ºС составляетρв

= 1000 кг/м 3 , морской водыρмв = 1025 кг/м 3 , плотность рабочей жидкости МГ-30 при 20 ºСρрж = 880 кГ/м 3 , плотность воздуха –ρвз = 1,25 кг/м 3 .

Относительной плотностью называется отношение плотности жидкости при заданной температуре к плотности воды при температуре 4 °С, поскольку масса 1 л воды при 4 °С равна 1 кг. Относительная плотность обозначается δ .

Например, если 1 л бензина при 20 °С имеет массу 730 г, а 1 л воды при 4 °С – 1000 г, то относительная плотность бензина будет равна 0,73.

Относительная плотность для ртути δрт= ρрт/ρв= 13600/1000 = 13,6, для воздуха δвз= ρвз/ρв = 0,00125, для рабочей жидкости- масла на минеральной основе δж= ρж/ρв= 880/1000 = 0,88

2. Удельным весом

называют вес единицы объема жидкости. Для однородной жидкости удельный вес равняется величине весаG жидкости, поделенной на величину объемаV , который она занимает

Удельный вес измеряется в системе СИ в Н/м 3 .

В системе СИ удельный вес воды при 4ºС составляет γ =ρв*g = 1000*9,81 = 9,81*10 3 Н/м 3 , удельный вес рабочей жидкости МГ-30 при 20 ºС составляетγ = 880*9,81 = 8,64*10 3 Н/м 3 .

В технической системе МКГСС – длина в метрах, основная единица – сила в килограммах силы(кГс), время в секундах.

Удельный вес воды в системе МКГСС равен γв

= 1000 кГс/м 3 , а рабочей жидкостиγрж = 880 кГс/м 3 .

Если жидкость неоднородна, то формулы (2.1) и (2.2) определяют средние значения удельного веса или плотности.

Динамическая вязкость газов и паров в интервале температуры от -220 до 1000°С

В таблице представлена динамическая вязкость газов и паров в зависимости от температуры (при отрицательной и положительной температуре).

Динамическая вязкость газов в таблице выражена в Па·сек с множителем 10-8. Например, коэффициент динамической вязкости азота N2 при нормальных условиях (при температуре 0°С и нормальном атмосферном давлении) равен 1665·10-8 или 0,00001665 Па·с.

Указана динамическая вязкость следующих газов и паров: азот N2, окись азота NO, закись азота N2O5, аммиак NH3, аргон Ar, водород H2, водяной пар H2O, воздух, гелий He, кислород O2, криптон Kr, ксенон Xe, метан CH4, неон Ne, сернистый газ SO2, углекислый газ CO2, окись углерода CO, этан C2H6, этилен C2H4.

По данным таблицы видно, что наиболее вязким газом при комнатной температуре является газ неон — вязкость неона равна 3113·10-8 Па·с.

Единица измерения коэффициента динамической вязкости

В Международной системе единиц (СИ) паскаль, умноженный на секунду — единица измерения динамической вязкости. Специального названия единица динамической вязкости не имеет. Единицу измерения коэффициента внутреннего трения легко получить, если использовать выражение (2). Рассмотрим единицы измерения физических величин, которые входят в правую часть формулы (2). Так $\left=$м; $\left=\frac{м}{с}$; $\left=\frac{кг}{м^3}$, получим:

В системе СГС (сантиметр, грамм, секунда) пуаз — единица измерения динамической вязкости. Соотношение между $Па\cdot с$ (единица измерения динамической вязкости в СИ) и паузом:

Вязкость газов

Вязкость газов (явление внутреннего трения) — это появление сил трения между слоями газа, движущимися друг относительно друга параллельно и с разными по величине скоростями. Вязкость газов увеличивается с ростом температуры

Взаимодействие двух слоев газа рассматривается как процесс, в ходе которого от одного слоя к другому передается импульс. Сила трения на единицу площади между двумя слоями газа, равная импульсу, передаваемому за секунду от слоя к слою через единицу площади, определяется законом Ньютона:

τ=-η•dν/dz

где:
dν/dz — градиент скорости в направлении перпендикулярном направлению движения слоев газа.
Знак минус указывает, что импульс переносится в направлении убывания скорости.
η — динамическая вязкость.

η=1/3•ρ(ν)•λ,

ρ — плотность газа,
(ν) — средняя арифметическая скорость молекул
λ — средняя длина свободного пробега молекул.

Вязкость некоторых газов (при 0°C)

Вещество Вязкость 10 -5 кг/(м*с)
Азот 1,67
Аммиак 0,93
Водород 0,84
Воздух 1,72
Гелий 1,89
Гелий 1,89
Кислород 1,92
Метан 1,04
Углекислый газ 1,40
Хлор 1,29

Вязкость сыра

Сыр — это пищевой продукт, получаемый из молока путем введения молочнокислых бактерий, ферментов, способствующих его свертыванию, либо посредством плавления молочных продуктов.

Сыры классифицируются на твердые, мягкие, плавленые, рассольные. Показатель вязкости целесообразно рассматривать у плавленых сыров.

Вязкость данного продукта снижается при повышении содержания в нем влаги. На нее также влияет зрелость исходного сырья, вид и доза солей-плавителей, активная кислотность сыра. В слабой степени на вязкость влияет содержание в сырье жира, хотя он и увеличивает пластичность сырной массы.

Коэффициент динамической вязкости

Численное обозначение абсолютной вязкости является индексом сопротивляемости испытуемых веществ взаимному перемещению или скольжению их слоев.

Единицей измерения коэффициента в системе СИ приняты паскаль-секунды:

Физическая основа динамического показателя заключается в его соответствии касательному напряжению, которое происходит между слоями вещества, перемещающимися относительно друг друга, при условии расстояния между ними, равного единице длины, и на скорости, равной единице.

Вязкость жидкости

Вязкость жидкости определяется формулой, в которой динамический коэффициент определяет пропорциональность скорости движения слоев и расстояния между ними:

  • τ – касательное напряжение;
  • µ — показатель пропорциональности, который является динамическим индексом вещества.

Закон вязкости жидкости был установлен Ньютоном в конце 17 века. Абсолютный показатель зависит от типа газа или жидкости, температуры веществ.

Коэффициенты вязкости среды

Взаимодействие слоев среды друг на друга сказывается на характеристиках всей системы жидкости или газа. Вязкость – это один из примеров такого физического явления, как трение. Благодаря ей верхние и нижние слои среды постепенно выравнивают скорости своего тока, и в конечном итоге она приравнивается к нулю. Также вязкость можно характеризовать как сопротивление одного слоя среды другому.

Для описания таких явлений выделяют две качественные характеристики внутреннего трения:

  • динамический коэффициент вязкости (динамическая вязкость жидкости);
  • кинетический коэффициент вязкости (кинетическая вязкость).

Обе величины связаны уравнением υ = η / ρ, где ρ – плотность среды, υ – кинетическая вязкость, а η – динамическая вязкость.

Примеры решения задач

Попробуем решить следующую задачу.

Установить тип движения жидкого вещества по трубам теплообменника, имеющего структуру «труба в трубе». Параметры внутренней трубы – 25*2 мм, внешней – 50*2,5 мм. Массовый расход воды составляет 4000 кг/ч (обозначение G). Плотность жидкости – 1000 кг/м3. Абсолютный индекс составляет 1•10-3 Па*с.

Действие 1.

Следует узнать эквивалентный диаметр сечения межтрубного пространства:

Действие 2.

Определение скорости воды на основе уравнения расхода:

Действие 3.

По формуле Рейнольдса найти число Re:

Подставляя значения, получаем:

Ответ:

режим перемещения воды в межтрубном пространстве является турбулентным.

Примечания

  1. В общем случае это не так.
  2. О некоторых ошибках в курсах гидродинамики, с. 3—4.
  3. Alexander J. Smits, Jean-Paul Dussauge Turbulent shear layers in supersonic flow. — Birkhäuser, 2006. — P. 46. — ISBN 0-387-26140-0.
  4. data constants for sutherland’s formula
  5. Viscosity of liquids and gases
  6. Хмельницкий Р. А. Физическая и коллоидная химия: Учебних для сельскохозяйственных спец. вузов. — М.: Высшая школа, 1988. — С. 40. — 400 с. — ISBN 5-06-001257-3.
  7. Попов Д. Н. Динамика и регулирование гидро- и превмосистем. : Учеб. для машиностроительных вузов. — М. : Машиностроение, 176. — С. 175. — 424 с.
  8. Седов Л. И. Механика сплошной среды. Т. 1. — М.: Наука, 1970. — С. 166.
  9. Френкель Я. И. Кинетическая теория жидкостей. —Ленинград, Наука, 1975. — стр. 226
  10. Ojovan M. Viscous flow and the viscosity of melts and glasses. Physics and Chemistry of Glasses, 53 (4) 143—150 (2012).
  11. Gas Viscosity Calculator

Вязкость аморфных материалов[ | ]

Вязкость аморфных материалов (например, стекла или расплавов) — это термически активизируемый процесс:

η ( T ) = A ⋅ exp ⁡ ( Q R T ) , {\displaystyle \eta (T)=A\cdot \exp \left({\frac {Q}{RT}}\right),}

где:

  • Q {\displaystyle Q} — энергия активации вязкости (Дж/моль);
  • T {\displaystyle T} — температура ();
  • R {\displaystyle R} — универсальная газовая постоянная (8,31 Дж/моль·К);
  • A {\displaystyle A} — некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости Q {\displaystyle Q} изменяется от большой величины Q H {\displaystyle Q_{H}} при низких температурах (в стеклообразном состоянии) на малую величину Q L {\displaystyle Q_{L}} при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда ( Q H − Q L ) < Q L {\displaystyle \left(Q_{H}-Q_{L}\right) , или ломкие, когда ( Q H − Q L ) ≥ Q L {\displaystyle \left(Q_{H}-Q_{L}\right)\geq Q_{L}} . Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса R D = Q H Q L {\displaystyle R_{D}={\frac {Q_{H}}{Q_{L}}}} : сильные материалы имеют R D < 2 {\displaystyle R_{D}<2} , в то время как ломкие материалы имеют R D ≥ 2 {\displaystyle R_{D}\geq 2} .

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:

η ( T ) = A 1 ⋅ T ⋅ ⋅ {\displaystyle \eta (T)=A_{1}\cdot T\cdot \left\cdot \left}

с постоянными A 1 {\displaystyle A_{1}} , A 2 {\displaystyle A_{2}} , B {\displaystyle B} , C {\displaystyle C} и D {\displaystyle D} , связанными с термодинамическими параметрами соединительных связей аморфных материалов.

В узких температурных интервалах недалеко от температуры стеклования T g {\displaystyle T_{g}} это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.

Вязкость

Если температура существенно ниже температуры стеклования T < T g {\displaystyle T , двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

η ( T ) = A L T ⋅ exp ⁡ ( Q H R T ) , {\displaystyle \eta (T)=A_{L}T\cdot \exp \left({\frac {Q_{H}}{RT}}\right),}

с высокой энергией активации Q H = H d + H m {\displaystyle Q_{H}=H_{d}+H_{m}} , где H d {\displaystyle H_{d}} — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а H m {\displaystyle H_{m}} — энтальпия их движения. Это связано с тем, что при T < T g {\displaystyle T аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.

При T ≫ T g {\displaystyle T\gg T_{g}} двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

η ( T ) = A H T ⋅ exp ⁡ ( Q L R T ) , {\displaystyle \eta (T)=A_{H}T\cdot \exp \left({\frac {Q_{L}}{RT}}\right),}

но с низкой энергией активации Q L = H m {\displaystyle Q_{L}=H_{m}} . Это связано с тем, что при T ≫ T g {\displaystyle T\gg T_{g}} аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Методы определения вязкости жидкости

Вискозиметрия – это измерение вязкости. На современном этапе развития науки найти значение вязкости жидкости практическим путем можно четырьмя способами:

1. Капиллярный метод. Для его проведения необходимо иметь два сосуда, соединенных стеклянным каналом небольшого диаметра известной длины. Также нужно знать значения давления в одном сосуде и в другом. Жидкость помещается в стеклянный канал, и за определенный промежуток времени она перетекает из одной колбы в другую.

Дальнейшие подсчеты производятся с помощью формулы Пуазейля для нахождения значения коэффициента вязкости жидкости.

На практике жидкие среды могут представлять собой раскаленные до 200-300 градусов смеси. Обычная стеклянная трубка в таких условиях просто бы деформировалась или даже лопнула, что недопустимо. Современные капиллярные вискозиметры собраны из качественного и стойкого материала, который легко переживает такие нагрузки.

2. Медицинский метод по Гессе. Чтобы рассчитать вязкость жидкости таким способом, необходимо иметь не одну, а две идентичные капиллярные установки. В одну из них помещают среду с заранее известным значением внутреннего трения, а в другую – исследуемую жидкость. Далее измеряют два значения времени и составляют пропорцию, по которой выходят на нужное число.

3. Ротационный метод. Для его проведения необходимо иметь конструкцию из двух соосных цилиндров. Это значит, что один из них должен быть внутри другого. В промежуток между ними заливают жидкость, а затем придают скорость внутреннему цилиндру. Эта угловая скорость также сообщается жидкости. Разница в силе момента позволяет вычислить вязкость среды.

4. Определение вязкости жидкости методом Стокса. Для проведения этого опыта необходимо иметь вискозиметр Гепплера, который представляет собой цилиндр, заполненный жидкостью. Перед началом эксперимента делают две пометки на цилиндре и измеряют длину между ними. Затем берут шарик определенного радиуса R и опускают его в жидкую среду. Чтобы определить скорость его падения, находят время передвижения объекта от одной метки до другой. Зная скорость движения шарика, можно вычислить вязкость жидкости.

Вязкость газов

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

η = 1 3 ⟨ u ⟩ ⟨ λ ⟩ ρ {\displaystyle \eta ={\frac {1}{3}}\langle u\rangle \langle \lambda \rangle \rho } ,

где ⟨ u ⟩ {\displaystyle \langle u\rangle } — средняя скорость теплового движения молекул, ⟨ λ ⟩ {\displaystyle \langle \lambda \rangle } − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность ρ {\displaystyle \rho } прямо пропорциональна давлению, а ⟨ λ ⟩ {\displaystyle \langle \lambda \rangle } — обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).

С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа u {\displaystyle u} , растущей с температурой как T {\displaystyle {\sqrt {T}}}

Влияние температуры на вязкость газов

В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).

Формула Сазерленда

может быть использована для определения вязкости идеального газа в зависимости от температуры:

μ = μ 0 T 0 + C T + C ( T T 0 ) 3 / 2 , {\displaystyle {\mu }={\mu }_{0}{\frac {T_{0}+C}{T+C}}\left({\frac {T}{T_{0}}}\right)^{3/2},}

где:

  • μ — динамическая вязкость в (Па·с) при заданной температуре T;
  • μ0 — контрольная вязкость в (Па·с) при некоторой контрольной температуре T0;
  • T — заданная температура в Кельвинах;
  • T0 — контрольная температура в Кельвинах;
  • C — постоянная Сазерленда для того газа, вязкость которого требуется определить.

Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.

Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже:

Газ C, K T0, K μ0, мкПа·с
Воздух 120 291,15 18,27
Азот 111 300,55 17,81
Кислород 127 292,25 20,18
Углекислый газ 240 293,15 14,8
Угарный газ 118 288,15 17,2
Водород 72 293,85 8,76
Аммиак 370 293,15 9,82
Оксид серы(IV) 416 293,65 12,54
Гелий 79,4 273 19

Что такое вязкость

Важной характеристикой вещества является его вязкость. Вязкость жидкости — это ее способность оказывать сопротивление перемещению одних частиц относительно других, то есть противостоять касательным усилиям в потоке

Данный параметр среды нельзя обнаружить в состоянии покоя, он оценивается только во время движения вещества, когда начинают действовать силы сцепления между молекулами.

Существует две разновидности вязкости: динамическая (или абсолютная) и кинетическая. Оба показателя уменьшаются при повышении температуры вещества.

Данное свойство присутствует у всех веществ, которые обладают текучестью. Текучесть — это сдвиг (перемещение) одних частиц по отношению к другим той же самой среды. За счет силы внутреннего трения вязкость противостоит процессу текучести. Данная формулировка относится не только к жидким, но и к газообразным веществам. А вот применительно к твердым это свойство имеет несколько другую природу.

Society of Automobile Engineers

Сообществом автомобильных инженеров (SAE) предоставляется классификация моторных масел по их вязкости. Данный параметр очень важен: от того насколько вещество густое, зависит, в какие мелкие зазоры оно способно проникать, какое сопротивление воздействует на трущиеся детали, как результат, насколько повысится или понизится расход топлива. Вязкость масла зависит от температуры: чем она ниже – тем гуще становится вещество. Современные добавки (присадки) позволяют повлиять на этот параметр. И то, как ведут себя составы при разных термических условиях, определяет, при каких температурах их можно применять.

Маркировка SAE включает буквы и цифры, например 5W20 и пр. Расшифровка обозначения может быть проведена самостоятельно, также удобно пользоваться следующей таблицей:

Марка вязкости по SAE Расшифровка – температурный диапазон, °С
0W20 -35… +10-15
0W40 -35… +35
5W20 -25… +10-15
SAE 5W30 -25… +20
5W40 -25… +35
5W50 -25… +45 и выше
10W30 -20… +30
10W-40 -20… +35
10W60 -20… +45
15W-30 -15… +35
15W40 -15… +45
20W-40 -10… +45
20W50 -10… +45 и выше
SAE 30 0… +45

Первые цифры с буквой, например 40 W или 10W, означают температуру, при которой можно прокачивать масло через систему, т. е. это термические условия, при которых оно не слишком густое, чтобы вызвать перегрузку и затруднения в работе. Вторые цифры, например 10 или 40, означают вязкость масла при нагреве, т. е. во время работы.

Марки вязкости по SAE соответствуют ГОСТам:

Соответствие классов вязкости      
Класс вязкости Класс вязкости
SAE ГОСТ SAE ГОСТ
5W 33 5W20 24
10W 43 10W-20 33/8
15W 53 10W-20 43/6
20W 63 10W-20 43/8
20 6 15W-30 43/10
20 8 15W-30 53/10
30 10 15W-40 53/12
30 12 20W-40 53/14
40 14 20W-30 63/10
40 16 20W-40 63/14
50 20 20W-40 63/16

Что будет, если залить неподходящее вещество?

Использование неподходящего по вязкости масла грозит повышенным износом, поломкой двигателя и системы подачи масла. К примеру, если залить состав 10W, когда на улице -40°С, он слишком загустеет, насос не сможет перекачивать его с достаточной для обеспечения нормальной смазки скоростью. Кроме этого, загустевшее масло не будет проникать во все зазоры, из-за чего двигатель начнет быстро истираться. То же произойдет, если залить состав с неподходящей температурой работы. Например, масло 5W20, залитое в жару +40°С станет слишком жидким и не сможет компенсировать трение, может создаться его избыток.

Вязкость, как физическая величина

Согласно общему закону внутреннего трения Ньютона, сила внутреннего трения жидкости (f) зависти от:

  • площади соприкосновения ее слоев (S)
  • разности скоростей слоев (Δv)
  • расстояния между слоями (Δh)
  • молекулярных свойств жидкости

Коэффициент пропорциональности η, присутствующий в формуле, и зависящий от молекулярных сил сцепления жидкости, получил название коэффициент внутреннего трения, или динамическая вязкость.

Сводная таблица кинематическая вязкости нефтепродуктов

Жидкость Температура Кинематическая вязкость, сСт
Анилин 20 4,3
Бензин 15 0,65
Бензол 20 0,07
Глицерин 50% водный раствор 20 6
Глицерин 86% водный раствор 20 105
Глицерин безводный 20 870
Керосин 15 2,7
Нефть легкая 18 25
Нефть тяжелая 18 140
Скипидар 16 1,83
Спирт этиловый 20 2,54
Дизельное топливо (ГОСТ 305-82) 20 18 — 60
Масло авиационное МС, МК (ГОСТ 21743-76) 100 14 – 22
Масло веретенное АУ (ГОСТ 1642-75) 20 49
Масло индустриальное (ГОСТ 20799-75):
И-5А 50 4
И-8А 50 7
И-12А 50 12
И-25А 50 25
И-30А 50 30
И-40А 50 40
И-70А 50 70
И-100А 50 100
Касторовое масло 20 1002
Турбинное масло (ГОСТ 32-74, ГОСТ 9972-74):
ТП-30 50 30
ТП-46 50 46

Вязкость бензина

Вязкость — важный показатель качества любого моторного топлива, в том числе бензина. От него зависят надежность работы аппаратуры, использования топлива при низкой температуре, его противоизносные характеристики, процесс сгорания. От вязкости бензина зависит скорость его поступления к двигателю по топливной системе.

На вязкость бензина влияет его химический и фракционный состав. Так, при увеличении процентного содержания нафтеновых и ароматических углеводородов, утяжелении фракционного состава топлива оно становится более вязким.

В целом вязкость бензина невелика (у разных марок она колеблется в узком диапазоне — 0,3–-0,7 Ст при температуре 20 °С, так что при конструировании бензопроводов эта величина считается относительно постоянной), и даже ее небольшое увеличение при понижении температуры не вызывает осложнений в функционировании двигателей (в отличие от других видов топлива, для которых вязкость более сильно влияет на эксплуатационные свойства).

Для перекачивания бензина (как и для прочих видов топлива) используют многочисленные типы насосов: поршневые, шестеренчатые, плунжерные, мембранные, винтовые, пластинчатые.

Значение — коэффициент — динамическая вязкость

При этом использовались полученные ранее значения коэффициента динамической вязкости и изохорной теплоемкости фреона-22. Вычисленные по этому методу Я, оказались ниже найденных по уравнению ( 45) на 14 % при — 40 С и на 4 % — при 100 С. Таким образом, вычисления по уравнению ( 45) приводят к промежуточным значениям Я между расчетными данными, представленными в работе Свелы, и вычисленными по методу Бром-лея. По этому уравнению были определены Я, приведенные на стр.

Для жидкостей, а также для газов значение коэффициента динамической вязкости ji зависит главным образом от температуры и лишь в незначительной степени от давления. Только близ критической точки начинает сильно сказываться зависимость от давления. П-4 иллюстрирует это явление для воды и пара. Все другие исследования жидкости ведут себя принципиально подобным же образом. Согласно уравнению ( 6 — 5) кинематическая вязкость v жидкостей практически тоже не зависит от давления вследствие их незначительной сжимаемости. Для газов согласно уравнению состояния она обратно пропорциональна давлению.

В табл. 1.21 приведены данные о кинематической вязкости бытовых сточных вод, вычисленные по (1.15), а в табл 1.22 — значения коэффициента динамической вязкости некоторых растворов.

По этому уравнению, описывающему опытные данные Беннинга и Марквуда с отклонениями до 2 % и опытные данные Кинзера с отклонениями 15 %, в настоящей работе вычислены значения коэффициента динамической вязкости кипящей жидкости, которые приведены на стр.

Подчеркнем, что в данном случае мы имеем дело со средами, плотности которых могут резко меняться в выделенном элементарном объеме ( например, за счет вытеснения одной среды другой), поэтому эффективные коэффициенты объемной вязкости могут принимать значения, намного превосходящие значения коэффициентов динамической вязкости. В дальнейшем при анализе конкретных задач мы будем удерживать в выражениях (1.47) лишь первые слагаемые в правых частях, что эквивалентно замене как жидкой, так и твердой фазы соответствующей идеальной жидкостью.

Очевидно, что при определении трения колонны о промывочную жидкость необходимо подставлять значения коэффициентов динамической вязкости этой жидкости.

В таблицах физических параметров в приложении даются значения коэффициентов вязкости для некоторых жидкостей и газов. Так как значения коэффициентов динамической вязкости в некоторых справочниках даются в абсолютной системе, а именно в пуазах ( 1 пуаз — 1 г / см — сек), то часто при использовании табличных данных имеете с величинами в технической системе мер допускаются ошибки. Этих ошибок можно избежать, если при расчетах применять кинематическую ( вязкость, которая в обеих системах мер имеет одинаковую размерность. По этой причине кинематическая вязкость приводится в таблицах приложения.

Эти измерения подтвердили существование аномальной зависимости вязкости водяного пара от давления на изотермах в области, ранее исследованной Кестиным , и позволили получить надежные данные в ранее практически не исследованной области параметров состояния. Результаты проведенных опытов показали, что принятая при составлении Международной скелетной таблицы ( МСТ) однозначная зависимость избыточной вязкости ( i — и. Наши измерения, результаты которых приведены в , не охватывали, однако, области параметров состояния, прилегающей к линии насыщения. Следует также отметить, что в МСТ не были зафиксированы значения коэффициента динамической вязкости воды и пара на линии насыщения при температурах выше 300 С, так как данные для этой области были немногочисленными и противоречивыми. В связи с осуществлением Международной программы исследований, направленных наразработку новых скелетных таблиц коэффициентов переноса воды и водяного пара, в Физической лаборатории ВТИ была поставлена работа по подробному исследованию вязкости воды и пара вблизи линии насыщения.

Характер зависимостей коэффициента трения набивок от затяжки сальника и давления рабочей среды при испытании на азоте идентичен характеру зависимостей, полученных при испытаниях на воде. Однако сопоставление рис. 27 и 28, а также рис. 29 и 30 показывает, что коэффициент трения при уплотнении воды ниже коэффициента трения при уплотнении азота при одинаковых условиях испытаний. Это, по-видимому, объясняется различием в значениях коэффициента динамической вязкости, который существенно больше у воды, что и определяет отличие в эффективности разделяющих свойств пленки рабочей среды между штоком и набивкой.

Динамическая вязкость

Вязкость (внутреннее трение) возникает между двумя слоями газа или жидкости, которые перемещаются параллельно друг другу с разными скоростями в результате возникновения сил трения между ними. Вязкость обусловлена переносом молекулами из одного слоя вещества в другой количества движения.

В одномерном случае, когда $v=v\left(x\right),$ движение вещества описывают при помощи уравнения Ньютона вида:

где $dF$ — сила внутреннего трения, которая действует на площадь ($dS$) поверхностного слоя; $\frac{dv}{dx}$ — градиент скорости перемещения слоев по направлению оси X (перпендикулярно поверхностному слою); $\eta $ — коэффициент динамической вязкости.

В соответствии с классической кинетической теорией коэффициент вязкости газа равен:

где $\left\langle \lambda \right\rangle $ — средняя длина свободного пробега молекулы; $\left\langle v\right\rangle $ — средняя скорость теплового движения молекул; $\rho $ — плотность газа. В более точной теории коэффициент $\frac{1}{3}$ , заменяется на параметр ($\varphi $), который зависит от характера взаимодействия молекул в веществе. Так, если считают, что молекулы газа сталкиваются как гладкие, твердые шары, то $\varphi =0,499.$ При использовании более точных моделей коэффициент $\varphi $ является функцией от температуры вещества.

Для жидкостей выражения (2) не является справедливым. Для газов, исходя из (2) $\eta \sim \sqrt{T}$, тогда как, у жидкостей вязкость, с ростом температуры, уменьшается. Вязкость жидкости обратно пропорциональна коэффициенту диффузии (D):

где $f$ — некоторый постоянный параметр, имеющий размерность силы.

Вязкость газов[ | ]

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

η = 1 3 ⟨ u ⟩ ⟨ λ ⟩ ρ {\displaystyle \eta ={\frac {1}{3}}\langle u\rangle \langle \lambda \rangle \rho } ,

где ⟨ u ⟩ {\displaystyle \langle u\rangle } — средняя скорость теплового движения молекул, ⟨ λ ⟩ {\displaystyle \langle \lambda \rangle } − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность ρ {\displaystyle \rho } прямо пропорциональна давлению, а ⟨ λ ⟩ {\displaystyle \langle \lambda \rangle } — обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).

С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа u {\displaystyle u} , растущей с температурой как T {\displaystyle {\sqrt {T}}}

Влияние температуры на вязкость газов

В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).

Формула Сазерленда

может быть использована для определения вязкости идеального газа в зависимости от температуры:

μ = μ 0 T 0 + C T + C ( T T 0 ) 3 / 2 , {\displaystyle {\mu }={\mu }_{0}{\frac {T_{0}+C}{T+C}}\left({\frac {T}{T_{0}}}\right)^{3/2},}

где:

  • μ — динамическая вязкость в (Па·с) при заданной температуре T;
  • μ0 — контрольная вязкость в (Па·с) при некоторой контрольной температуре T0;
  • T — заданная температура в Кельвинах;
  • T0 — контрольная температура в Кельвинах;
  • C — постоянная Сазерленда для того газа, вязкость которого требуется определить.

Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.

Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже:

Газ C, K T0, K μ0, мкПа·с
Воздух 120 291,15 18,27
Азот 111 300,55 17,81
Кислород 127 292,25 20,18
Углекислый газ 240 293,15 14,8
Угарный газ 118 288,15 17,2
Водород 72 293,85 8,76
Аммиак 370 293,15 9,82
Оксид серы(IV) 416 293,65 12,54
Гелий 79,4 273 19

Динамическая вязкость газов и паров в диапазоне температуры от 0 до 700°С

В таблице приведены значения коэффициента динамической вязкости газов и паров при положительной температуре в диапазоне от 0 до 700°С.

Вязкость в таблице выражена в Па·сек с множителем 10-8. Например, коэффициент динамической вязкости ацетилена C2H2 при нормальных условиях равен 955·10-8 или 0,00000955 Па·с.

Даны значения динамической вязкости следующих газов и паров: ацетон (диметилкетон, пропанон) C3H6O, бензол C6H6, бром Br2, бромная ртуть (бромид ртути III) HgBr3, n-бутан C4H10, бутан C4H10, бутилен (1-бутен) C4H8, 2-бутен C4H8, водород бромистый (бромоводород) HBr, водород йодистый (иодоводород) HI, водород хлористый (газообразная соляная кислота, хлороводород) HCl, водород фтористый (фтороводород, гидрофторид, фторид водорода) HF, n-гексан (гексан) C6H14, n-гептан C7H16, диметиловый эфир (метиловый эфир, метоксиметан, древесный эфир) C2H6O, диэтиловый эфир (этиловый эфир, серный эфир) C4H10O, дифенилметан С13Н12, дифениловый эфир C12H10O, изоаметилен (3-метил-1-бутен) C5H10, изобутан (метилпропан, 2-метилпропан) С4Н10, изобутилацетат (изобутиловый эфир уксусной кислоты) С6Н12О2, изобутилформиат C5H10O2, изопентан C5H12, изопропиловый спирт (пропанол-2, 2-пропанол), изопропанол, диметилкарбинол) С3Н7ОН, иод (йод) I2, йодистая ртуть HgI3, метилацетат (метиловый эфир уксусной кислоты) С3Н6О2, метилацетилен (пропин) C3H4, 3-метилен-1-бутен C5H10, метилбромид (бромистый метил, монобромметил, монобромэтан, метилбромид, бромметил) CH3Br, мезитилен C9H12, метиленхлорид (хлористый метилен, дихлорметан, ДХМ) CH2Cl2, метилизобутират C2H10O2, метиловый спирт (метанол, древесный спирт, карбинол, метилгидрат, гидроксид метила) CH3OH, метилтиофен, мышьяковистый водород (гидрид мышьяка, арсин) AsH3, метилхлорид (хлорметан) CH3Cl, нитрозил хлорид (хлористый нитрозил, оксид хлорид азота) NOCl, нонан C9H20, октан C8H18, окись углерода CO, н-пентан C5H12, амилен, пиридин C5H5N, пропан C3H8, пропилацетат (н-пропиловый эфир уксусной кислоты) C5H10O2, пропилен C3H6, пропиловый спирт (пропан-1-ол, 1-пропанол) C3H7OH, ртуть Hg, сероводород H2S, сероуглерод CS2, силан (кремневодород, гидрид кремния) SiH4, толуол (метилбензол) C7H8, тиазол C3H3NS, тиофен C4H4S, триметилбутан C7H16, триметилэтилен С5Н10, четырехбромистое олово (бромид олова IV) SnBr4, четыреххлористое олово (хлорид олова IV) SnCl4, четыреххлористый углерод (тетрахлорметан, ЧХУ) CCl4, циклогексан C6H12, циклопропан C3H6, цинк Zn, уксусная кислота (этановая кислота) C2H4O2, хлор Cl2, хлороформ (трихлорметан, метилтрихлорид, хладон-20) CHCl3, этилацетат (этиловый эфир уксусной кислоты) C4H8O2, этиловый спирт (этанол, метилкарбинол, винный спирт или алкоголь C2H6O) C2H5OH, этилпропионат C5H10O2, этилхлорид (хлористый этил, монохлорэтан) C2H5Cl.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector